
Modern Testing Patterns

Tom Cools 
@TCoolsIT
www.tomcools.be







Tests as a 
safeguard

Give us more certainty that our 
code will work in production.







Mutation Testing



How it works

😃 
➡ 👽 
➡ ✅ ❌ 
➡ 📊

1. Source code
2. Mutants
3. Killed/survived
4. Report



stryker-mutator.io







Improving Database Tests



H2 In memory with Spring



H2 In memory with Spring

+ Quick Tests
+ Auto DDL setup

-Auto DDL setup  -> Assumes Database in production does the 
same

-Not the real database



H2 In memory with Spring
+ Liquibase



H2 In memory with Spring + Liquibase

+ Quick Tests
+ Database setup is same as production (constraints, FKs, …)

-Slower startup, because database needs to be constructed
-Not the real database



TestContainers <3 Spring
(and Liquibase)



TestContainers <3 Spring

+ Very accurate performance
+ Database setup is same as production (constraints, FKs, …)

-Slower startup, due to liquibase AND testcontainers starting
-Requires external software to be installed (Docker)



Improving API Tests



Using TestContainers for APIs



TestContainers for APIs

+ Very accurate testing
+ Easy to maintain on changes of API 

-Availability of API in a Docker container?
-Transient dependencies (API container requires other containers?)



Wiremock



Wiremock

+ Easy to setup/configure
+ Recording functionality for updates of API
+ Options to test for network issues (delays/faults)

-Synchronization between API and Wiremock setup?
-Often doesn’t include all request details



Test By Contract



Contract Testing

+ Encourages up-front design and collaboration
+ Generates both Tests (Producer) and Stubs (Consumer)
+ If Consumer Driven: See what consumers you will break

-More complex setup
-Both Consumer and Producer need to agree to work like this





Share it with everyone

Be consiously on the lookout to improve your 
tests with regards to COST/BENEFITS





Tom Cools 
@TCoolsIT
www.tomcools.be

tomcools.be/talks/testing-arnhemjug


